Abstract

Polyhydroxyalkanoates (PHAs) have gained much attention as a potential alternative to conventional plastic bone scaffolds due to their biocompatibility and biodegradability, among a diverse range of advantageous properties. However, the water resistance of PHA creates an environment that can interfere with cell interactions. In this study, a three-dimensional-printed PHA scaffold was fabricated through fused deposition modeling printing considering the physical properties of PHA. The PHA bone scaffolds were then coated with polydopamine (pDA) and/or hydroxyapatite (HA) in various configurations using a relatively simple and rapid process involving only immersion. The PHA–pDA– HA scaffold showed enhanced cell viability, proliferation, and differentiation, and could thus serve as a versatile platform for bone tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call