Abstract
Biomolecules-mediated biomimetic mineralization has been extensively investigated and applied to fabricate nano-assemblies with unique hierarchical architectures and salient properties. The confined-source ion diffusion plays a key role in the biomineralization process, but little investigative efforts have focused on it. Here, we developed a simple method to mimic the in vivo condition by a confined diffusion method, and hydroxyapatite nanoflower assemblies (HNAs) with exquisite hierarchical architectures were obtained. The HNAs were assembled from needle-like hybrid nanocrystals of hydroxyapatite and hyaluronan. The results revealed that the strong interactions between ions and hyaluronan led to the nucleation of hydroxyapatite and the following aggregation. The combination of the external diffusion field and the internal multiple interactions induced the self-assembling processes. Additionally, HNAs with colloid stability and excellent biocompatibility were proved to be a promising cargo carrier for intranuclear delivery. This work presents a novel biomimetic mineralization strategy based on confined diffusion system for fabricating delicate hydroxyapatite, which offers a new perspective for the development of biomimetic strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.