Abstract

AbstractPerceiving mechanical stimuli and converting them into bioelectric signals to complete sensing information transmission and computation is a fundamental mechanism for survival and evolution of natural animals. This leads to a variety of intelligent behaviors, such as processing, learning, judgment, feedback, and so on when tackling complex and changeable environmental challenges. Until now, the realization of a bionic system to mimic the above activities has long been an important goal which is mainly based on the integration of distributed functional units, lacking the coordination between functional units and the whole systems. Herein, based on the mechano‐electronic coupling effect of liquid metals and by following the basic principle of perception and transduction of piezo proteins, a biomimetic functional liquid metal mechatronic device is proposed with the switching behavior via establishing the reversible charge gradient. Owing to flexible features of liquid metals, this all‐soft mechatronic device exhibits excellent compliance with the whole system. Based on electrochemical characteristics of liquid metals, the passive intelligent device demonstrates versatile behaviors, such as self‐energy supply, encoding, computation, sensing, information identification, communicating, and controlling functions etc. which can only possibly be achieved by living animals. This work opens a new strategy for developing intelligent mechatronic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call