Abstract
Bioelectronic interfaces that allow dehydrogenase enzymes to electrically communicate with electrodes have potential applications in the development of biosensors and biocatalytic reactors. A fully scalable, post-CMOS-compatible, three-electrode interface to biochemical sensors, consisting of Ti/Au working and auxiliary electrodes and a Ti/Au/Ag/AgCl reference electrode, has been developed. Also described is a tri-functional linking molecule that binds the mediator and cofactor to the electrode in a unique spatial arrangement in which the dehydrogenase enzyme can bind to cofactor and multistep electron transfer between the electrode and enzyme is achieved. This approach provides greater flexibility in assembling complex bioelectronic interfaces than is possible with previously reported, linear linking molecules. A cysteine molecule was self-assembled on a gold electrode via a thiol bond. The electron mediator toluidine blue O (TBO) and the cofactor, /spl beta/-nicotinamide adenine dinucleotide phosphate (NADP/sup +/) were chemically attached to cysteine via the formation of amide bonds. Cyclic voltammetry, was used to demonstrate the electrical activity, and enzymatic activity of the resulting bioelectronic interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.