Abstract
Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment which promotes the formation of the immunosuppressive tumor microenvironment (ITME) through multiple mechanisms, severely counteracting the therapeutic efficacy of immunotherapy. In this study, a novel biomimetic ferroptosis inducer (D@FMN-M) capable of ITME regulation for enhanced cancer ferroptosis immunotherapy is reported. Upon tumor accumulation of D@FMN-M, the intratumoral mild acidity triggers the biodegradation of Fe-enriched nanocarriers and the concurrent co-releases of dihydroartemisinin (DHA) and Fe3+. The released Fe3+ is reduced to Fe2+ by consuming intratumoral glutathione (GSH), which promotes abundant free radical generation via triggering Fenton and Fe2+-DHA reactions, thus inducing ferroptosis of both cancer cells and M2-type TAMs. Resultantly, the anticancer immune response is strongly activated by the massive tumor-associated antigens released by ferroptositic cancer cells. Also importantly, the ferroptosis-sensitive M2-type TAMs will be either damaged or gradually domesticated to ferroptosis-resistant M1 TAMs under the ferroptosis stress, favoring the normalization of ITME and finally amplifying cancer ferroptosis immunotherapeutic efficacy. This work provides a novel strategy for ferroptosis immunotherapy of solid tumors featuring TAMs infiltration and immunosuppression by inducing dual ferroptosis of tumor cells and M2-type TAMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.