Abstract

A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)—synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.

Highlights

  • Titanium alloys are the most widely used material for the manufacturing of implants

  • Scanning electron microscopy (SEM) images of Ti-6Al4V and Ti-Zr-Nb oxidized surfaces are presented in Fig. 1a, b, respectively

  • Initial samples of Ti-6Al-4V and Ti-Zr-Nb alloys were studied by Fourier transform infrared spectroscopy (Fig. 2.)

Read more

Summary

Introduction

Titanium alloys are the most widely used material for the manufacturing of implants. This is due to their high inertness to biological environments and close-to-human-bone mechanical properties as compared to stainless steel and other alloys employed in medical practice [1]. After implantation with titanium alloy implants, some problems in conjunction with bone and other tissues have arisen in individual cases. That is why the possibility of applying to the surface of titanium implants more biocompatible coatings is still very important. One of the most preferred ways to solve this problem is the coating with a hydroxyapatite. A coating of hydroxyapatite (HA) layer can be deposited onto the metal alloy to assist the osseointegration of these implants with surrounding tissues [2]. The main reason for using HA coating on metallic substrates is to keep the mechanical properties of the metal such as load-bearing

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.