Abstract

Gemcitabine (Gem) is a key drug for pancreatic cancer, yet limited by high systemic toxicity, low bioavailability and poor pharmacokinetic profiles. To overcome these limitations, Gem prodrug amphiphiles were synthesised with oleyl, linoleyl and phytanyl chains. Self-assembly and lyotropic mesophase behaviour of these amphiphiles were examined using polarised optical microscopy and Synchrotron SAXS (SSAXS). Gem-phytanyl was found to form liquid crystalline inverse cubic mesophase. This prodrug was combined with phospholipids and cholesterol to create biomimetic Gem-lipid prodrug nanoparticles (Gem-LPNP), verified by SSAXS and cryo-TEM to form liposomes. In vitro testing of the Gem-LPNP in several pancreatic cancer cell lines showed lower toxicity than Gem. However, in a cell line-derived pancreatic cancer mouse model Gem-LPNP displayed greater tumour growth inhibition than Gem using a fraction (<6 %) of the clinical dose and without any systemic toxicity. The easy production, improved efficacy and low toxicity of Gem-LPNP represents a promising new nanomedicine for pancreatic cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call