Abstract

Biosilicification in diatoms is achieved by specific interactions between silaffins, composed of polypeptides and long-chain polyamines, and silicic acid derivatives. The polycondensation of silicic acids is reported to be catalyzed by the long-chain polyamines that mainly contain tertiary N-methylpropyleneimine moieties. In this report, we utilized a tertiary amine-containing polymer, poly(2-(dimethylamino)ethyl methacrylate) (poly(DMAEMA)), as a surface-grafted, biomimetic counterpart of the long-chain polyamines in silaffins and demonstrated that the surface-initiated polycondensation of silicic acids, leading to the formation of silica thin films, proceeded smoothly on surfaces presenting poly(DMAEMA), where poly(DMAEMA) was grown from gold surfaces by surface-initiated, atom transfer radical polymerization. The formed silica film was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.