Abstract

Morphology, phase and chemical compositions of atmospheric plasma-sprayed (APS) hydroxyapatite (HAp) coatings were investigated by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), proton-induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS). The study involved as-sprayed coatings and coatings incubated in simulated body fluid (rSBF) for up to 56 days. The results obtained using combined contributions from three complementary analytical techniques confirm that secondary Ca-deficient defect hydroxyapatite precipitated by a biomimetic process from the simulated body fluid onto the HAp coating surface after a prolonged induction time. Owing to its sensitivity proton-induced X-ray emission (PIXE) provides information on in vitro resorption of calcium phosphate ceramics and dynamic dissolution/precipitation events occurring during the incubation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.