Abstract
As we all know biochemical surface modification is promising for implantable biomedical device applications due to its ability to directly provide therapeutic molecular cues for tissue repair. However, presenting multiple molecular cues on implant surfaces in the proper way is challenging. In this study, a multi-component polyelectrolyte multilayer (PEM) coating composed of collagen type I, RGD peptide functionalized hyaluronic acid, and recombined human BMP-2 (rhBMP-2) was constructed on Ti via a layer by layer technique. Subsequently, this coating was crosslinked via disulfide bonds to form a surface gel coating with a semi-interpenetrating network. A disulfide-crosslinked RGD-containing biomimetic extracellular matrix coating that could serve as a reservoir for rhBMP-2 was thus obtained. The embedded rhBMP-2 displayed a sustained release profile and a strong resistance to the physiological environment. In vitro biological evaluation revealed that the resultant disulfide crosslinking bioactive coating could effectively modulate cellular behaviors of pre-osteoblasts such as adhesion, proliferation and differentiation. In vivo study further revealed that this coating could enhance the bone-to-implant integration characterized by the increased removal torque values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.