Abstract

AbstractWe have investigated the folding and assembly behavior of a cystine‐based dimeric diamide bearing pyrene units and solubilizing alkyl chains. In low‐polarity solvents, it forms a 14‐membered ring through double intramolecular hydrogen bonds between two diamide units. The spectroscopic studies revealed that the folded state is thermodynamically unstable and eventually transforms into more energetically stable helical supramolecular polymers that show an enhanced chiral excitonic coupling between the transition dipoles of the pyrene units. Importantly, compared to an alanine‐based monomeric diamide, the dimeric diamide exhibits a superior kinetic stability in the metastable folded state, as well as an increased thermodynamic stability in the aggregated state. Accordingly, the initiation of supramolecular polymerization can be regulated using a seeding method even under microfluidic mixing conditions. Furthermore, taking advantage of a self‐sorting behavior observed in a mixture of l‐cysteine‐ and d‐cysteine‐based dimeric diamides, a two‐step supramolecular polymerization was achieved by stepwise addition of the corresponding seeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.