Abstract

A variety of bioactive materials are currently developed to expand T cells ex vivo for adoptive T cell immunotherapy, also known as called artificial antigen-presenting cells (aAPCs). However, almost all the reported designs exhibit relatively smooth surface modified with T cell activating biomolecules, and therefore cannot well mimic the dendritic morphological characteristics of dendritic cells (DCs), the most important type of natural antigen-presenting cells (APCs) with high specific surface areas. Here, we propose a hydrophilic monomer-mediated surface morphology control strategy to synthesize biocompatible dendritic poly(N-isopropylacrylamide) (PNIPAM) microspheres for constructing aAPCs with surface morphology mimicking natural APCs (e.g., DCs). Interestingly, when maintaining the same ligands density, dendritic polymeric microspheres-based aAPCs (DPM beads) can more efficiently expand CD8+ T cells than that with smooth surfaces. Moreover, adoptive transfer of antigen-specific CD8+ T cells expanded by the DPM beads show significant antitumor effect of B16-OVA tumor bearing mice. Therefore, we provide a new concept for constructing biomimetic aAPCs with enhanced T cell expansion ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call