Abstract
AbstractAllylic amide moieties are commonly encountered in natural products and are privileged structures in pharmaceuticals and agrochemicals. Moreover, because allylic amide can be to converted into an array of high‐value motifs, they have been widely employed in organic synthesis. However, the development of catalytic systems for intermolecular allylic amidation of olefins, particularly branched α‐olefins, has proven to be challenging. Here, a biomimetic, synergistic catalytic method is reported that combines photoredox, cobalt, and Brønsted base catalysis for the synthesis of substituted allylic amides from branched α‐olefins and simple imides without using oxidants. This low‐cost, operationally simple method features a broad substrate scope and excellent functional group compatibility. Moreover, it is successfully used for the functionalization of several structurally complex molecules demonstrating the method's potential utility for medicinal chemistry applications. Mechanistic studies revealed that C(sp3)─N bond formation is mediated by a nitrogen‐centered radical intermediate, which is generated via a sequence involving deprotonation and single‐electron oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.