Abstract

With the wide application of graphite products, the low strength has become a key influencing factor hindering the application of the functionalized graphite. Taking inspiration from the phenomenon of the pericarp preventing fruit cracking in nature, we proposed a biomimetic structure based on the pomegranate, and successfully fabricated a pomegranate-like carbon‑carbon composite (PL-C/rGO-1700) at 1700 °C by spark plasma sintering (SPS), using nanodiamonds and graphene oxide (GO) as precursors, respectively. The disordered nanocrystalline graphite derived from nanodiamonds and the reduced graphene oxide (rGO) can be considered as “pomegranate seeds” and “membrane”, respectively. The addition of rGO effectively deflected the crack extension path to enhance the flexural strength of the samples. Moreover, nanodiamond-derived disordered stacked nanocrystalline graphite improved the hardness, Young's modulus, and indentation elastic recovery of graphite bulk materials. The obtained PL-C/rGO-1700 exhibited a microhardness, flexural strength, indentation elastic recovery rate, and compressive strength of 2.7 GPa, 78.1 MPa, 81.0%, and 259.0 MPa. Therefore, our work provided a simple and rapid method for the preparation of high-strength carbon‑carbon composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.