Abstract

In the present study, chitosan/hydroxyapatite (HA)/β-tircalcium phosphate (β-TCP) composites were produced using squid pen derived chitosan (CHS) and commercial crab derived chitosan (CHC). CHS was prepared from squid pens by alkaline N-deacetylation. HA and β-TCP were extracted from mussel shells using a microwave irradiation method. Two different composites were prepared by incorporating 50% (w/w) HA/(β-TCP) in CHS or CHC followed by lyophilization and cross-linking of composites by tripolyphosphate (TPP). The effect of different freezing temperatures of −20, −80 and −196°C on the physicochemical characteristics of composites was investigated. A simulated body fluid (SBF) solution was used for preliminary in vitro study for 1, 7, 14 and 28 days and the composites were characterized by XRD, FTIR, TGA, SEM, μ-CT and ICP-MS. Porosity, pore size, water uptake; water retention abilities and in vitro degradations of the prepared composites were evaluated. The CHS composites were found to have higher porosity (62%) compared to the CHC composites (porosity 42%) and better mechanical properties. The results of this study indicated that composites produced at −20°C had higher mechanical properties and lower degradation rate compared with −80°C. Chitosan from the squid pen is an excellent biomaterial candidate for bone tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.