Abstract

Many nonheme iron-dependent enzymes activate dioxygen to catalyze hydroxylations of arene substrates. Key features of this chemistry have been developed from complexes of a family of tetradentate tripodal ligands obtained by modification of tris(2-pyridylmethyl)amine (TPA) with single alpha-arene substituents. These included the following: -C(6)H(5) (i.e., 6-PhTPA), L(1); -o-C(6)H(4)D, o-d(1)-L(1); -C(6)D(5), d(5)-L(1); -m-C(6)H(4)NO(2), L(2); -m-C(6)H(4)CF(3), L(3); -m-C(6)H(4)Cl, L(4); -m-C(6)H(4)CH(3), L(5); -m-C(6)H(4)OCH(3), L(6); -p-C(6)H(4)OCH(3), L(7). Additionally, the corresponding ligand with one alpha-phenyl and two alpha-methyl substituents (6,6-Me(2)-6-PhTPA, L(8)) was also synthesized. Complexes of the formulas [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(n)())Fe(II)(OTf)(2)] (n = 1-7, OTf = (-)O(3)SCF(3)), and [(L(8))Fe(II)(OTf)(2)](2) were obtained and characterized by (1)H NMR and UV-visible spectroscopies and by X-ray diffraction in the cases of [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(6))Fe(II)(OTf)(2)], and [(L(8))Fe(II)(OTf)(2)](2). The complexes react with tert-butyl hydroperoxide ((t)()BuOOH) in CH(3)CN solutions to give iron(III) complexes of ortho-hydroxylated ligands. The product complex derived from L(1) was identified as the solvated monomeric complex [(L(1)O(-))Fe(III)](2+) in equilibrium with its oxo-bridged dimer [(L(1)O(-))(2)Fe(III)(2)(mu(2)-O)](2+), which was characterized by X-ray crystallography as the BPh(4)(-) salt. The L(8) product was also an oxo-bridged dimer, [(L(8)O(-))(2)Fe(III)(2)(mu(2)-O)](2+). Transient intermediates were observed at low temperature by UV-visible spectroscopy, and these were characterized as iron(III) alkylperoxo complexes by resonance Raman and EPR spectroscopies for L(1) and L(8). [(L(1))Fe(II)(OTf)(2)] gave rise to a mixture of high-spin (S = 5/2) and low-spin (S = 1/2) Fe(III)-OOR isomers in acetonitrile, whereas both [(L(1))Fe(OTf)(2)] in CH(2)Cl(2) and [(L(8))Fe(OTf)(2)](2) in acetonitrile afforded only high-spin intermediates. The L(1) and L(8) intermediates both decomposed to form respective phenolate complexes, but their reaction times differed by 3 orders of magnitude. In the case of L(1), (18)O isotope labeling indicated that the phenolate oxygen is derived from the terminal peroxide oxygen via a species that can undergo partial exchange with exogenous water. The iron(III) alkylperoxo intermediate is proposed to undergo homolytic O-O bond cleavage to yield an oxoiron(IV) species as an unobserved reactive intermediate in the hydroxylation of the pendant alpha-aryl substituents. The putative homolytic chemistry was confirmed by using 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH) as a probe, and the products obtained in the presence and in the absence of air were consistent with formation of alkoxy radical (RO(*)). Moreover, when one ortho position was labeled with deuterium, no selectivity was observed between hydroxylation of the deuterated and normal isotopomeric ortho sites, but a significant 1,2-deuterium shift ("NIH shift") occurred. These results provide strong mechanistic evidence for a metal-centered electrophilic oxidant, presumably an oxoiron(IV) complex, in these arene hydroxylations and support participation of such a species in the mechanisms of the nonheme iron- and pterin-dependent aryl amino acid hydroxylases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.