Abstract

The toxicological safety of products developed as alternative for conventional plastics (i.e., petroleum derivatives) inevitably demands conducting (eco)toxicological studies. Thus, the aim of the current study was to evaluate the biochemical toxicity of polyethylene microplastics (PE MPs) (representative of conventional MPs) and polylactic acid biomicroplastics (PLA BioMPs) in Aphylla williamsoni larvae used as experimental models. Animals subjected to short exposure to both pollutants (48 h), at environmentally relevant concentration (6 mg/L). At the end of the experiment, different toxicity biomarkers were evaluated. To assess the possible impact of pollutants on the nutritional status of the animals, the total protein, total soluble carbohydrate and triglyceride levels were determined. However, we did not observe differences between the groups, which suggests that PE MPs and PLA BioMPs did not affect the animals' energy metabolism, inducing them to a nutritional deficit. However, larvae exposed to PLA BioMPs have shown increased nitrite and lipid peroxidation levels, which supports the hypothesis that these pollutants increase oxidative stress processes in the animals evaluated, which can affect the animals' physiological homeostasis from different changes. In addition, the decrease in superoxide dismutase activity and of total thiols levels, in these same animals, is suggestive of the impact of PLA BioMPs on the antioxidant defenses, causing a REDOX imbalance, never before reported. On the other hand, decreased AChE activity was only observed in larvae exposed to PLA BioMPs, which demonstrates the anticholinergic activity of the tested polymers; the consequences of which include changes in different neurophysiological functions. Thus, the current study has helped improving the scientific knowledge about impacts caused by PLA BioMPs on freshwater ecosystems, as well as corroborated assertions about the risks posed by such biopolymers on these environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.