Abstract

In this research work, we present a newly fingertip electrocardiogram (ECG) data acquisition device capable of recording the lead-1 ECG signal through the right- and left-hand thumb fingers. The proposed device is high-sensitive, dry-contact, portable, user-friendly, inexpensive, and does not require using conventional components which are cumbersome and irritating such as wet adhesive Ag/AgCl electrodes. One of the other advantages of this device is to make it possible to record and use the lead-1 ECG signal easily in any condition and anywhere incorporating with any platform to use for advanced applications such as biometric recognition and clinical diagnostics. Furthermore, we proposed a biometric identification method based on combining autocorrelation and discrete cosine transform-based features, cepstral features, and QRS beat information. The proposed method was evaluated on three fingertip ECG signal databases recorded by utilizing the proposed device. The experimental results demonstrate that the proposed biometric identification method achieves person recognition rate values of 100% (30 out of 30), 100 $$\%$$ (45 out of 45), and 98.33 $$\%$$ (59 out of 60) for 30, 45, and 60 subjects, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.