Abstract
BackgroundThe impact of biometric covariates on risk for adverse outcomes of COVID-19 disease was assessed by numerous observational studies on unstratified cohorts, which show great heterogeneity. However, multilevel evaluations to find possible complex, e.g. non-monotonic multi-variate patterns reflecting mutual interference of parameters are missing. We used a more detailed, computational analysis to investigate the influence of biometric differences on mortality and disease evolution among severely ill COVID-19 patients.MethodsWe analyzed a group of COVID-19 patients requiring Intensive care unit (ICU) treatment. For further analysis, the study group was segmented into six subgroups according to Body mass index (BMI) and age. To link the BMI/age derived subgroups with risk factors, we performed an enrichment analysis of diagnostic parameters and comorbidities. To suppress spurious patterns, multiple segmentations were analyzed and integrated into a consensus score for each analysis step.ResultsWe analyzed 81 COVID-19 patients, of whom 67 required mechanical ventilation (MV). Mean mortality was 35.8%. We found a complex, non-monotonic interaction between age, BMI and mortality. A subcohort of patients with younger age and intermediate BMI exhibited a strongly reduced mortality risk (p < 0.001), while differences in all other groups were not significant. Univariate impacts of BMI or age on mortality were missing. Comparing MV with non-MV patients, we found an enrichment of baseline CRP, PCT and D-Dimers within the MV group, but not when comparing survivors vs. non-survivors within the MV patient group.ConclusionsThe aim of this study was to get a more detailed insight into the influence of biometric covariates on the outcome of COVID-19 patients with high degree of severity. We found that survival in MV is affected by complex interactions of covariates differing to the reported covariates, which are hidden in generic, non-stratified studies on risk factors. Hence, our study suggests that a detailed, multivariate pattern analysis on larger patient cohorts reflecting the specific disease stages might reveal more specific patterns of risk factors supporting individually adapted treatment strategies.
Highlights
The impact of biometric covariates on risk for adverse outcomes of COVID-19 disease was assessed by numerous observational studies on unstratified cohorts, which show great heterogeneity
Among German patients, hospitalization is necessary only in a small proportion of cases. Those in need of inhouse treatment with COVID-19 can often be handled at general wards while only a minority of patients with a fulminant deterioration is in need for intensive care resources and consecutive ventilatory support [2]
Influence of Body mass index (BMI) and age on mortality and length of MV Data distribution across BMI and age revealed an apparent inhomogeneity of mortality and length of mechanical ventilation across the BMI-age plane indicating a complex, non-monotonic interaction between age, BMI and mortality, as can be seen in Fig. 1a and b
Summary
The impact of biometric covariates on risk for adverse outcomes of COVID-19 disease was assessed by numerous observational studies on unstratified cohorts, which show great heterogeneity. Among German patients, hospitalization is necessary only in a small proportion of cases Those in need of inhouse treatment with COVID-19 can often be handled at general wards while only a minority of patients with a fulminant deterioration is in need for intensive care resources and consecutive ventilatory support [2]. Possible reasons for different outcomes may lay in large heterogeneities of health care systems, hospital and especially ICU resources as well as differing admission policies and clinical operating instructions. Another obstacle for a clear picture is the considerably differing populations under analysis between the studies. To elucidate the impact of different biometric risk factors on the course of the novel disease, it might be necessary to go into a more detailed, computational analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.