Abstract

The prevalence of myopia is growing at an alarming rate and is associated with axial elongation of the eye. The cause of this undesirable physiological change involves multiple factors. When the magnitude of myopia approaches high levels, this accompanying mechanical effect increases the risk of developing other clinical conditions associated with permanent vision loss. Prior work has investigated how we may halt or reverse this process of axial elongation associated with myopic progression when we expose the eye to a peripheral myopic defocus stimulus. Specifically, the known, short-term response to myopic defocus stimulation is promising and demonstrates the possibility of establishing more permanent effects by regulating the axial length of the eye with specific defocus stimulation. However, how to directly convert these known, short-term effects into more long-term, permanent changes to effectively prevent these unfavourable physiological and refractive changes over time is yet to be understood. Here, we show for the first time that we can produce sustained, long-term reductions in axial length and refractive endpoints with cumulative short-term exposure to specific myopic defocus stimuli using a novel optical design that incorporates an augmented reality optical system. We believe that this technology will have the potential to improve the quality of vision in mankind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.