Abstract
Wood utilization for pulp and paper and biorefinery applications requires some kind of mechanical and/or physical–chemical pretreatment. Among the chemical treatments the alkaline ones are the most used worldwide, although acid and solvent treatments have also being used. This paper deals with eucalypt wood deconstruction with alkaline processes including soda-AQ, soda-AQ-O2, soda-O2, and kraft. The kraft process is largely used by the pulp industry and is evaluated here only to serve as a reference. The behavior of the four eucalypt clones selected in chapter 2 were investigated when submitted to the aforementioned processes regarding their screened yield, chemical demands and pulp quality at different kappa number levels (15, 35, 50, and 70). The two most promising processes (kraft and soda-AQ) were chosen for producing pulps (kappa 15 and 20) which were studied in depth (content of carbohydrates, uronic acid, hexenuronic acid, polysaccharide molecular weight, residual lignin structure, etc.), as well as their respective black liquors (heating value, solid content, elemental analysis, and lignin structure). The main findings of this work were: (1) the wood of the four different hybrid eucalypt clones behave similarly in the various alkaline deconstruction treatments; (2) the soda-AQ and Kraft were considered the most suitable processes for producing pulp on the basis of yield, chemical demands and pulp fiber integrity; (3) the soda-AQ process can potentially replace the kraft for a high degree of wood delignification (kappa number 15); (4) the alkaline processes using oxygen (soda-AQ-O2 and soda-O2) are more suitable for wood deconstruction aimed at biofuels; and (5) the soda-AQ process resulted black liquor of more suitable burning characteristics than the kraft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.