Abstract
The high concentrations of CO (toxic) and CO2 (greenhouse gases) in blast furnace gas (a by-product of steelworks) reflect its low calorific value. In this study, anaerobic granular sludge was used to convert carbon from blast furnace gas to methane via exogenous hydrogen addition. The inhibition of methane production by CO partial pressure (PCO) was found to start from 0.4 atm. The intermediate metabolites from CO to methane including acetate, propionate, and H2 accumulated at higher CO concentrations in the presence of 2-bromoethanesulfonic acid. After the introduction of H2 and blast furnace gas, although the hydrogen partial pressure (PH2) up to 1.54 atm resulted in the maximum CH4 yield, the whole system was not stable due to the accumulation of a large amount of volatile fatty acids. The optimum PH2 on CH4 production from the simulated blast furnace gas, 5.32 mmol g−1 VSS, was determined at 0.88 atm in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.