Abstract

We present a new heterogeneous integration method which enables direct incorporation of silicon-based microfluidic components in an injection-moulded polymer lab-on-a-chip (LOC). The integration is performed as part of the injection moulding process, forming direct fluidic junctions between the polymer and the silicon chip while embedding the silicon chip in the polymer chip. We have demonstrated that such fluidic junctions can withstand at least 3 bars of liquid pressure. With this integration method, the fluidic interface between the silicon chip and the polymer chip can be made compact and free of dead-volume. The method opens for mass fabrication of highly functional, heterogeneous LOC systems containing MEMS and NEMS components such as biosensors and actuators integrated in the polymer chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.