Abstract
Recognition of biomedical entities from literature is a challenging research focus, which is the foundation for extracting a large amount of biomedical knowledge existing in unstructured texts into structured formats. Using the sequence labeling framework to implement biomedical named entity recognition (BioNER) is currently a conventional method. This method, however, often cannot take full advantage of the semantic information in the dataset, and the performance is not always satisfactory. In this work, instead of treating the BioNER task as a sequence labeling problem, we formulate it as a machine reading comprehension (MRC) problem. This formulation can introduce more prior knowledge utilizing well-designed queries, and no longer need decoding processes such as conditional random fields (CRF). We conduct experiments on six BioNER datasets, and the experimental results demonstrate the effectiveness of our method. Our method achieves state-of-the-art (SOTA) performance on the BC4CHEMD, BC5CDR-Chem, BC5CDR-Disease, NCBI-Disease, BC2GM and JNLPBA datasets, achieving F1-scores of 92.92%, 94.19%, 87.83%, 90.04%, 85.48% and 78.93%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.