Abstract
With the proliferation of different heterogeneous biomedical data sources and with the growing amount of their content available over the Web, there is, on one side, the need to support mashing and data integration and, on the other side, the more urgent need to relate literature and research results that are often enclosed in unstructured textual documents. Nowadays, ontologies have been used as a common access knowledge layer playing a crucial role to support categorized access to the information resources. Moreover, manual construction of a domain-specific ontology and content categorization is a labor intensive and a time-consuming process. This work focuses on the development of a novel biomedical ontology-driven multi-facets visualization to support categorized access to heterogeneous and unstructured biomedical data sources (e.g., PubMed, WikiGenes). Specifically, the framework relies on: knowledge extraction methodology, to automatically extract ontology exploiting the Fuzzy Formal Concept Analysis theory; and ontology matching strategy to find relation between extracted ontology and the available ones in the field of biomedicine (e.g., Ontology of Gene and Genomes, Gene Ontology, Protein Ontology). The evaluation will be shown in terms of Precision and Recall by using biomedical ontology concepts as input query to the multi-facets visualization engine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.