Abstract

The levels of 26 minerals in rat body hair were analyzed in control and hindlimb-suspended Wistar Hannover rats (n=5 each). We quantified the levels of 22 minerals in this experiment. However, we were unable to measure the levels of 4 minerals (Be, V, Cd, and Hg) quantitatively because they were below the limit of detection. Of the 22 quantified, the levels of 19 minerals were not significantly different between control and hindlimb-suspended groups. The levels of 3 minerals (Pb, Cr, and Al) tended to be higher in the hindlimb-suspended group than in the control group; however, this difference was not significant. The concentrations of 3 other minerals (I, K, and Mg) were significantly different between the 2 groups. The iodine (I) level was 58.2% higher in the hindlimb-suspended group than in the control group (P<0.05). Potassium (K) and magnesium (Mg) levels were 55.2% and 20.4% lower, respectively, in the experimental group (P<0.05 in both cases).These results indicate that a physiological change in mineral metabolism resulting from physical or mental stress, such as hindlimb suspension, is reflected in body hair. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. We believe that hindlimb suspension for 14 days can simulate the effects of an extremely severe environment, such as space flight, because the hindlimb suspension model elicits a rapid physiological change in skeletal muscle, bone, and fluid shift even in the short term. These results also suggest that we can detect various effects on the body by analyzing the human scalp hair shaft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call