Abstract
This study aimed to compare the properties and safety of self-designed plates in type II traumatic spondylolisthesis of the axis with those of traditional devices via finite element (FE) analysis. We constructed a hangman's fracture FE model from the occipital bone (C0) level to the C3 level. Then, FE models were constructed for the following four fixation systems: an anterior cervical L-shaped plate with four vertebral screws (4-ACLP), or six screws (6-ACLP), an anterior cervical orion plate (ACOP), and a posterior fixation system. A preloaded compressive force of 50 N and a moment of 1.5 N·m were applied to each model under six working conditions. The mobility of the C2/3 segment decreased significantly in four fixation models. In the Mises stress cloud diagram, 4-ACLP showed a better stress distribution in both the bone graft and fixation system than 6-ACLP and ACOP. The resultant force of 4-ACLP was lower but higher than ACOP in axial force. Additionally, the cage in the 4-ACLP configuration experienced the highest stress in the six working conditions. Hence, this novel self-designed plate has the potential to mitigate the operational difficulties, provide sufficient stability, reduce the risk of plate or screw fractures, and improve bone fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.