Abstract
Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here, 244 dura mater samples with or without vessels from 32 cadavers were tested in a quasi-static uniaxial tensile testing setup. The thicknesses of the meningeal and periosteal dura in vascular and avascular areas were histologically investigated in 36 samples using van Gieson staining. The elastic modulus of 112 MPa from dura samples containing vessels running transversely was significantly lower than samples with vessels running longitudinally (151 MPa; p < 0.001). The ultimate tensile strength of dura samples with transversely running vessels (11.1 MPa) was significantly lower in comparison to both avascular samples (14.9 MPa; p < 0.001) and samples with a longitudinally running vessel (15.0 MPa; p < 0.001). The maximum force of dura samples with longitudinally running vessels was 37 N (p < 0.001), this was significantly higher compared to the other groups which were 23 N (p < 0.001). The meningeal and periosteal dura layer thicknesses were not statistically different in avascular areas (p > 0.222). However, around the vessels, the meningeal dura layer was significantly thicker compared to the periosteal layer (p ≤ 0.019). The sum of the meningeal and periosteal layers was similar between vascular and avascular areas (p ≥ 0.071). Vascular areas of the human cranial dura mater withstand the same forces as avascular areas when being stretched. When stretched along the vessel, the dura-vessel composite can withstand even higher tensile forces compared to avascular areas. Vascular areas of the cranial dura mater seem to be similar when compared to avascular areas making their separate simulation in computational models non-essential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.