Abstract

The main objective of the study was to develop advanced biomechanical models of the intact human ankle complex. It was also aimed at designing a total ankle replacement which would better reproduce the physiological function of the joint. Passive flexion was analyzed in a number of lower-leg preparations with stereophotogrammetry and radiostereometry. The articular surfaces and fibres within the calcaneofibular and tibiocalcaneal ligaments were observed to prescribe the changing positions of bones, ligaments and instantaneous axis of rotation. Joint motion included rolling as well as sliding. Computer-based models elucidated this kinematics at the intact joint, and how changing positions of the centre of rotation and muscle lines of action affect lever arm length at different flexion angles. The mechanical response of the joint to anterior drawer and talar tilt tests was explained in terms of fibre recruitment. The experimental evidence and the geometrical models gave the basis for the design of a novel ankle replacement. A three-component, convex-tibia prosthesis was developed with articular surface shapes that are compatible with the geometry of the ligaments. The proposed prosthesis based on ligament/shape compatibility is showing encouraging results in initial implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.