Abstract

Flavonoids accumulate in tomato (Solanum lycopersicum L.) fruit cuticles during ripening. Their quantitative contribution to the biomechanical properties of the cuticle is studied in six tomato genotypes which show presence or absence of these compounds at the red ripe stage of fruit development. Tomato cuticles with flavonoids at red ripe showed a dramatic increase of these compounds between mature green and red ripe stages together with a significant increase in the elastic modulus. On the other hand, cuticles without flavonoids displayed a similar biomechanical behaviour at mature green and red ripe stages. The absence of flavonoids could also be related with a predominance of the viscoelastic performance of the cuticle. Thus, the increase of phenolics in tomato fruit cuticles during ripening is correlated with a more rigid cutin network that reinforces the mechanical function of polysaccharides which tend to diminish at this stage due to cell wall disassembly. A role of phenolics as biomechanical modulators of the cuticle behaviour is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call