Abstract

Mathematical modelling in biomechanics of infarcted left ventricle (LV) serves as an indispensable tool for remodelling mechanism exploration, LV biomechanical property estimation and therapy assessment after myocardial infarction (MI). However, a review of mathematical modelling after MI has not been seen in the literature so far. In the paper, a systematic review of mathematical models in biomechanics of infarcted LV was established. The models include comprehensive cardiovascular system model, essential LV pressure-volume and stress-stretch models, constitutive laws for passive myocardium and scars, tension models for active myocardium, collagen fibre orientation optimization models, fibroblast and collagen fibre growth/degradation models and integrated growth-electro-mechanical model after MI. The primary idea, unique characteristics and key equations of each model were identified and extracted. Discussions on the models were provided and followed research issues on them were addressed. Considerable improvements in the cardiovascular system model, LV aneurysm model, coupled agent-based models and integrated electro-mechanical-growth LV model are encouraged. Substantial attention should be paid to new constitutive laws with respect to stress-stretch curve and strain energy function for infarcted passive myocardium, collagen fibre orientation optimization in scar, cardiac rupture and tissue damage and viscoelastic effect post-MI in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.