Abstract
Unilateral skipping or bipedal galloping is one of the gait types that humans are able to perform. In contrast to many animals, where gallop is the preferred gait at higher speeds, human bipedal gallop only occurs spontaneously in very specific conditions (e.g. fast downhill locomotion). This study examines the lower limb mechanics and explores the possible reasons why humans do not spontaneously opt for gallop for steady-state locomotion on level ground. In 12 subjects, who were required to run and gallop overground at their preferred speed, kinematic and kinetic data were collected and mechanical work at the main lower limb joints (hip, knee, ankle) was calculated. In a separate treadmill experiment, metabolic costs were measured. Analysis revealed that the principal differences between running and galloping are located at the hip. The asymmetrical configuration of gallop involves distinct hip actions and foot placing, giving galloping legs different functions compared with running legs: the trailing leg decelerates the body in the vertical direction but propels it forward while the leading leg acts in the opposite way. Although both legs conserve mechanical energy by interchanging external mechanical energy with potential elastic energy, the specific orientation of the legs causes more energy dissipation and generation compared with running. This makes gallop metabolically more expensive and involves high muscular stress at the hips, which may be why humans do not use gallop for steady-state locomotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.