Abstract

The actin microfilament (F-actin) is a structural and functional component of the cell cytoskeleton. Notwithstanding the primary role it plays for the mechanics of the cell, the mechanical behaviour of F-actin is still not totally explored. In particular, the relationship between the mechanics of F-actin and its molecular architecture is not completely understood.In this study, the mechanical properties of F-actin were related to the molecular topology of its building monomers (G-actin) by employing a computational multi-level approach. F-actins with lengths up to 500nm were modelled and characterized, using a combination of equilibrium molecular dynamics (MD) simulations and normal mode analysis (NMA). MD simulations were performed to analyze the molecular rearrangements of G-actin in physiological conditions; NMA was applied to compute the macroscopic properties of F-actin from its vibrational modes of motion.Results from this multi-level approach showed that bending stiffness, bending modulus and persistence length are independent from the length of F-actin. On the contrary, the orientations and motions of selected groups of residues of G-actin play a primary role in determining the filament flexibility.In conclusion, this study (i) demonstrated that a combined computational approach of MD and NMA allows to investigate the biomechanics of F-actin taking into account the molecular topology of the filament (i.e., the molecular conformations of G-actin) and (ii) that this can be done using only crystallographic G-actin, without the need of introducing experimental parameters nor of reducing the number of residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.