Abstract
Biomechanics plays a pivotal role in articular cartilage development, pathophysiology, and regeneration. During embryogenesis and cartilage maturation, mechanical stimuli promote chondrogenesis and limb formation. Mechanical loading, which has been characterized using computer modeling and in vivo studies, is crucial for maintaining the phenotype of cartilage. However, excessive or insufficient loading has deleterious effects and promotes the onset of cartilage degeneration. Informed by the prominent role of biomechanics, mechanical stimuli have been harnessed to enhance redifferentiation of chondrocytes and chondroinduction of other cell types, thus providing new chondrocyte cell sources. Biomechanical stimuli, such as hydrostatic pressure or compression, have been used to enhance the functional properties of neocartilage. By identifying pathways involved in mechanical stimulation, chemical equivalents that mimic mechanical signaling are beginning to offer exciting new methods for improving neocartilage. Harnessing biomechanics to improve differentiation, maintenance, and regeneration is emerging as pivotal toward producing functional neocartilage that could eventually be used to treat cartilage degeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.