Abstract

IntroductionIn recent years, restorative dentistry has embraced various techniques, including direct, semi-direct, and indirect restorations, to address the replacement of lost tooth tissue. The focus has been on integrating the principles of Biomechanics, Bioactivity, and Biomimicry (3-Bio) as key drivers behind these innovations. MethodsThe aim of this article is to provide a concise overview of three important aspects of restorative dental materials: biomechanics, bioactivity and biomimetics. Further, the aim is to provide readers with relevant information on the 3-Bio concept, offering insights in to the innovative approaches shaping modern restorative dentistry. ResultsDeveloping restorative materials with interactive properties aligned with the 3-Bio concept poses a significant challenge. Currently, dentistry lacks a comprehensive system in this regard. The development of dental materials based on the 3-Bio concept could potentially elicit positive mechanical and biological responses in targeted tooth tissues. ConclusionAssessing several parameters through a battery of in vitro and in silico assays could help in tailoring the different aspects of the 3-Bio concept, spanning from bioactivity to biomimetics via biomechanics. This approach could allow the prediction and translation of the clinical performance of the assessed restorative materials. Clinical significanceThe findings of this opinion article highlight that the development of restorative materials aligned with the 3-Bio concept could enhance the management of dental defects and extend the longevity of bonded restorations, thereby improving patient care through tissue preservation. More collective efforts between clinicians, researchers, and even industrial partners are required to fully understand the correlation between bioactive behavior, biomechanical limitations, and biomimetics to provide suitable restorative materials for specific clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.