Abstract

ObjectiveAlthough plaque erosion causes approximately 40% of all coronary thrombi and disproportionally affects women more than men, its mechanism is not well understood. The role of tissue mechanics in plaque rupture and regulation of mechanosensitive inflammatory proteins is well established, but their role in plaque erosion is unknown. Given obvious differences in morphology between plaque erosion and rupture, we hypothesized that inflammation in general as well as the association between local mechanical strain and inflammation known to exist in plaque rupture may not occur in plaque erosion. Therefore, our objective was to determine if similar mechanisms underlie plaque rupture and plaque erosion.Methods and ResultsWe studied a total of 74 human coronary plaque specimens obtained at autopsy. Using lesion-specific computer modeling of solid mechanics, we calculated the stress and strain distribution for each plaque and determined if there were any relationships with markers of inflammation. Consistent with previous studies, inflammatory markers were positively associated with increasing strain in specimens with rupture and thin-cap fibroatheromas. Conversely, overall staining for inflammatory markers and apoptosis were significantly lower in erosion, and there was no relationship with mechanical strain. Samples with plaque erosion most closely resembled those with the stable phenotype of thick-cap fibroatheromas.ConclusionsIn contrast to classic plaque rupture, plaque erosion was not associated with markers of inflammation and mechanical strain. These data suggest that plaque erosion is a distinct pathophysiological process with a different etiology and therefore raises the possibility that a different therapeutic approach may be required to prevent plaque erosion.

Highlights

  • Thrombotic occlusion of the coronary arteries, a leading cause of morbidity and mortality worldwide, is caused by at least two distinct events

  • Overall staining for inflammatory markers and apoptosis were significantly lower in erosion, and there was no relationship with mechanical strain

  • Samples with plaque erosion most closely resembled those with the stable phenotype of thick-cap fibroatheromas

Read more

Summary

Introduction

Thrombotic occlusion of the coronary arteries, a leading cause of morbidity and mortality worldwide, is caused by at least two distinct events. The most extensively studied phenomenon is plaque rupture, in which an advanced fibroatheroma develops through inflammation-mediated mechanisms and fissures, exposing the blood to the pro-thrombogenic necrotic core and yielding thrombus formation. More recently identified is a second major cause of sudden coronary death termed plaque erosion, where a thrombus forms that does not communicate with the necrotic core of an atherosclerotic plaque. Plaque erosion is a frequent event, occurring in up to 40% of fatal coronary thrombi [1,2]. The demographics of individuals with the highest incidence of. Case Type Erosion Thick-cap TCFA Rupture Total n Age (SD) Gender 43.5 (9.01) 25 M/8 F 51.2 (7.72) 10 M/2 F.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call