Abstract

BackgroundRectangular cementless femur shaft prostheses have a higher primary stability than round shafts. A novel rectangular humeral shaft design was tested with two questions: does the rectangular design cause a higher fracture risk during implantation than round designs, and does it increase the torsional stiffness?Materials and methodsTwo series with six paired human humeri (total 24) were tested on one side with the rectangular shaft and on the contralateral side with a round shaft. In the first series, the shaft implantation was carried out with a constant speed of 100 mm/min and the maximum force was measured when the fracture occurred. In the second series, the implants were preloaded with 50 N and then rotated at 2° per second with monitoring of the torsional torque.ResultsThe maximum force at fracture showed no significant difference for the two designs (p = 0.34). Higher age and low bone density reduced the force required for fracture. The rectangular shaft showed significant higher torsional moments (p < 0.05).ConclusionsIn biomechanical testing, the rectangular shaft had a significantly higher primary torsional stability than the round shaft without a higher risk of fracture during cementless implantation. Fracture risk and torsional stability are influenced by age and bone density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.