Abstract

BackgroundThis study experimentally validated a computationally optimized screw number and screw distribution far cortical locking distal femur fracture plate and compared the results to traditional implants. Methods24 artificial femurs were osteotomized with a 10 mm fracture gap 60 mm proximal to the intercondylar notch. Three fixation constructs were used. (i) Standard locking plates secured with three far cortical locking screws inserted according to a previously optimized distribution in the femur shaft (n = 8). (ii) Standard locking plates secured with four standard locking screws inserted in alternating plate holes in the femur shaft (n = 8). (iii) Retrograde intramedullary nail secured proximally with one anterior-posterior screw and distally with two oblique screws (n = 8). Axial hip forces (700 and 2800 N) were applied while measuring axial interfragmentary motion, shear interfragmentary motion, and overall stiffness. FindingsExperimental far cortical locking plate results compared well to published computational findings. Far cortical locking femurs contained the highest axial motion within the potential ideal range of 0.2–1 mm and a sheer-to-axial motion ratio < 1.6 at toe-touch weight-bearing (700 N). At full weight-bearing (2800 N), Standard locking-plated femurs had the only axial motion within 0.2–1 mm but had an excess shear-to-axial motion ratio. Nail-implanted femurs underperformed at both forces. InterpretationFor toe-touch weight-bearing, the far cortical locking construct provided optimal biomechanics to allow moderate motion, which has been suggested to encourage early callus formation. Conversely, at full weight-bearing, the standard locking construct offered the biomechanical advantage on fracture motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.