Abstract

To test the following hypotheses: (i) anterior cervical discetomy and fusion (ACDF) using stand-alone interbody spacers will significantly reduce the range of motion from intact spine; and (ii) the use of a static or a rotational-dynamic plate will significantly augment the stability of stand-alone interbody spacers, with similar beneficial effect when compared to each other. Eleven human cadaveric subaxial cervical spines (age: 48.2 Âą 5.4 years) were tested under the following sequence: (i) intact spine; (ii) ACDF at C4 -C5 using a stand-alone interbody spacer; (iii) ACDF at C5 -C6 and insertion of an interbody spacer (two-level construct); and (iv) randomized placement of either a two-level locking static plate or a rotational-dynamic plate. Insertion of stand-alone cage at C4 -C5 and C5 -C6 caused a significant decrease in the range of motion compared to intact spine (P < 0.05). Placement of both the locking and the rotational dynamic plate further reduced the range of motion at C4 -C5 and C5 -C6 compared to stand-alone cage (P < 0.01). No significant differences in range of motion restriction at either C4 -C5 or C5 -C6 were found when the two plating systems were compared (P > 0.05). Cervical stand-alone interbody spacers caused significant restriction in the range of motion. Both plates significantly augmented the stability of stand-alone interbody spacers, with similar stabilizing effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.