Abstract

ObjectivesAim of this study was to determine the forces and moments during simulated initial orthodontic tooth movements using a novel biomechanical test setup. MethodsThe test setup consisted of an industrial precision robot with a force-torque sensor, a maxillary model and a control computer and software. Forces and moments acting on the corresponding experimental tooth during the motion simulations were dynamically measured for two 0.016” NiTi round archwires (Sentalloy Light/Sentalloy Medium). Intrusive (#1), rotational (#2) and angular (#3) tooth movements were simulated by a control program based on the principle of force control and executed by the robot. The results were statistically analysed using K–S-test and Mann-Whitney U test with a significance level of α = 5%. ResultsSentalloy Medium archwires generated higher forces and moments than the Sentalloy Light archwires in all simulations. In simulation #1 the mean initial forces/moments reached 1.442 N/6.781 Nmm for the Light archwires and 1.637 N/9.609 Nmm for the Medium archwires. In movement #2 Light archwires generated mean initial forces/moments of 0.302 N/−8.271 Nmm whereas Medium archwires generated 0.432 N/−9.653 Nmm. Simulation #3 showed mean initial forces/moments of −0.122 N/8.477 Nmm from the Light archwires compared to −0.300 N/11.486 Nmm for the Medium archwires. SignificanceThe measured forces and moments were suitable for initial orthodontic tooth movement in simulations #2 and #3, however inadequate in simulation #1. Reduced archwire dimensions (<0.016″) should be selected for initial leveling of vertical malocclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.