Abstract

The transverse carpal ligament (TCL) is a significant constituent of the wrist structure and forms the volar boundary of the carpal tunnel. It serves biomechanical and physiological functions, acting as a pulley for the flexor tendons, anchoring the thenar and hypothenar muscles, stabilizing the bony structure, and providing wrist proprioception. This article mainly describes and reviews our recent studies regarding the biomechanical role of the TCL in the compliant characteristics of the carpal tunnel. First, force applied to the TCL from within the carpal tunnel increased arch height and area due to arch width narrowing from the migration of the bony insertion sites of the TCL. The experimental findings were accounted for by a geometric model that elucidated the relationships among arch width, height, and area. Second, carpal arch deformation showed that the carpal tunnel was more flexible at the proximal level than at the distal level and was more compliant in the inward direction than in the outward direction. The hamate-capitate joint had larger angular rotations than the capitate-trapezoid and trapezoid-trapezium joints for their contributions to changes of the carpal arch width. Lastly, pressure application inside the intact and released carpal tunnels led to increased carpal tunnel cross-sectional areas, which were mainly attributable to the expansion of the carpal arch formed by the TCL. Transection of the TCL led to an increase of carpal arch compliance that was nine times greater than that of the intact carpal tunnel. The carpal tunnel, while regarded as a stabile structure, demonstrates compliant properties that help to accommodate biomechanical and physiological variants such as changes in carpal tunnel pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call