Abstract

Exposure to foot-transmitted vibration (FTV) can lead to pain and numbness in the toes and feet, increased cold sensitivity, blanching in the toes, and joint pain. Prolonged exposure can result in a clinical diagnosis of vibration-induced white foot (VIWFt). Data on the biomechanical response of the feet to FTV is limited; therefore, this study seeks to identify resonant frequencies for different anatomical locations on the human foot, while standing in a natural position. A laser Doppler vibrometer was used to measure vertical (z-axis) vibration on 21 participants at 24 anatomical locations on the right foot during exposure to a sine sweep from 10–200 Hz with a peak vertical velocity of 30 mm/s. The most notable differences in the average peak frequency occur between the toes (range: 99–147 Hz), midfoot (range: 51–84 Hz) and ankle (range: 16–39 Hz).Practitioner Summary: The biomechanical response of the human foot exposed to foot-transmitted vibration, when standing in a natural position, was measured for 21 participants. The foot does not respond uniformly; the toes, midfoot, and ankle regions need to be considered independently in future development of isolation strategies and protective measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call