Abstract
Prolonged exposure to mechanical vibration has been associated with many musculoskeletal, vascular and sensorineural disorders of the foot from simple Plantar fasciitis and Achilles Tendonitis to complex ones as Tarsal tunnel syndrome (TTS) and Vibration white feet/toes. Foot-transmitted vibrations (FTV) are exposed to the occupants using vibrating equipment’s or standing on vibrating platforms. Prolonged exposure to foot-transmitted vibrations (FTV) can lead to syndromes like vibration white feet/toes may result in tingling sensation, blanching of the toes and even numbness in the feet and toes. A multi-layered two dimensional, plane strain finite element model is developed from the actual cross-section of the human foot to study the stresses and strains developed in the skin and soft tissues. The foot is assumed to be in contact with a steel plate, mimicking the interaction between the foot and the work platform. The skin and the subcutaneous tissue are considered as hyperelastic and viscoelastic. The effects of loading in the form of displacements and the frequency of sinusoidal vibration on a time-dependent stress/strain distribution at various depths in the subcutaneous tissue of the foot are investigated. The simulations indicate that lower frequency vibrations penetrate deep into the subcutaneous tissue while higher frequencies are concentrated in the outer skin layer. The present biomechanical model may serve as a valuable tool to study the response of foot of those who work on a vibrating platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.