Abstract

Blood damage is recognized as one of the major problems caused by non-physiological shear force induced by artificial hearts. At present, the generally accepted manifestation of mechanical blood damage is the amount of free hemoglobin released into the blood. However, there is little research on the changes of blood cell state after circulating in artificial hearts at the single-cell level. It is well known that the mechanical properties of cells are of enormous relevance in the regulation of cellular physiological and pathological processes. In this regard, it is highly needed to study the mechanical properties of blood cells affected by non-physiological shear force. In this paper, a dielectrophoresis-based method of measuring the mechanical properties of erythrocytes circulating in artificial hearts was proposed, which was quantified with some crucial parameters such as strain, elongation index (EI), and Young's modulus. Experimental results indicated that with the increase of the working time of artificial hearts, the deformability of erythrocytes decreased, the stiffness substantially increased, and the mechanical stability decreased, particularly at long exposure times. The proposed method provides a deep insight into the mechanism of subhemolytic damage at the single-cell level and has a great potential to serve as a new tool for in vitro evaluation of potential blood damage in artificial hearts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call