Abstract

Quantitation of mechanical properties of a novel locking compression plate (LCP) for bovine tibia. Prospective in vitro study. Adult Murrah buffalo (250-350 kg) tibiae. Forty tibiae were randomly assigned to five treatment groups (n = 8/group): intact bone and bone constructs with a standard nonlocking plate, single LCP, double LCP, and novel LCP. During implant application, a mid-diaphyseal, oblique osteotomy was performed in all constructs, which were subsequently tested in axial compression (n = 4 each) or three-point craniocaudal bending (n = 4 each). Novel LCP alone (n = 4) was tested only in bending. Stiffness, yield load, ultimate failure load, and bending moment were determined from the load deformation curves and compared among different treatment groups (P < .05). Under compression, yield load of the novel LCP (24.07 ± 3.45 kN) was greater than that of the nonlocking plate (11.10 ± 2.46 kN) and the single LCP (18.01 ± 2.07 kN) but less than that of the double LCP (30.61 ± 1.95 kN), and ultimate failure load of the novel LCP (25.85 ± 4.32 kN) was greater than that of the nonlocking plate (13.18 ± 2.91 kN) but similar to that of the single LCP (21.17 ± 2.33 kN) and the double LCP (32.40 ± 1.46 kN). Bending moment, yield load, and ultimate failure load of the novel LCP were 565.37 ± 79.30 Nm, 7.90 ± 1.14 kN, 9.83 ± 1.38 kN, respectively, which were greater than those of the nonlocking plate and the single LCP but comparable to those of the double LCP. The novel LCP developed for bovine tibia was mechanically superior to the standard nonlocking plate or the single LCP and comparable to the double LCP. The novel LCP may provide rigid fixation of tibial diaphyseal fractures in buffaloes and cattle weighing 250 to 350 kg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call