Abstract
A previously developed and validated 6-year-old (6YO) Finite Element (FE) human head model was used to evaluate the biomechanical performance of a new bicycle helmet design for children. The cushion structure of the new helmet design is made of honeycomb paperboard and corrugated paperboard instead of Expanded Polystyrene (EPS) foam. Simulation results showed that the EPS foam helmet can effectively resist external shocks in a short period. However, based on biomechanical responses of the 6YO head model, honeycomb and corrugated paperboard helmets also had a promising cushioning performance. From the drop test of the head-helmet model simulations, the effects of paperboard thickness and material parameters on the helmet protection efficiency were further investigated. It was concluded that the EPS foam helmet can be replaced with honeycomb/corrugated paperboard helmets which are made of more environmental friendly manufacturing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.