Abstract
Previous studies reported an association of angiotensin-converting enzyme (ACE) I/D gene polymorphism with physical performance. The study was based on the hypothesis that certain individual biomechanical muscle properties could be associated with ACE genotype and that they could influence athletes' physical performance. Movement-independent individual biomechanical muscle properties of 62 sports students were determined by applying a mathematical model to experimental data. Subjects exerted concentric and isometric contractions at a leg-press. The model was based on a Hill-type muscle model, a function describing the geometrical arrangement of human leg extensor muscles, and an exponential function describing muscle activation. Mouthwash samples were taken to determine the ACE genotypes. Several combinations of experimentally determined biomechanical properties served as input variables for a discriminant analysis. We were able to show that individual biomechanical muscle properties correlated with ACE I/D gene polymorphism. With a combination of certain individual muscle parameters based on a Hill-type muscle model, we were able to separate three individual ACE genotypes (II, ID, DD) in a significant way (P<0.03) and correctly classify 89% of the cases using a discriminant analysis. We conclude that local biomechanical muscle properties are influenced by ACE genotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: European Journal of Applied Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.