Abstract

The mechanical behavior of human femurs has been described in the literature with regard to torsion and tension but only as independent measurements. However, in this study, human femurs were subjected to torsion to determine if a simultaneous axial tensile load was generated. Fresh frozen human femurs (n=25) were harvested and stripped of soft tissue. Each femur was mounted rigidly in a specially designed test jig and remained at a fixed axial length during all experiments. Femurs were subjected to external and internal rotation applied at a constant angulation rate of 0.1 deg/s to a maximum torque of 12 N m. Applied torque and generated axial tension were monitored simultaneously. Outcome measurements were extracted from torsion-versus-tension graphs. There was a strong relationship between applied torsion and the resulting tension for external rotation tests (torsion/tension ratio=551.7±283.8 mm, R(2)=0.83±0.20, n=25), internal rotation tests (torsion/tension ratio=495.3±233.1 mm, R(2)=0.87±0.17, n=24), left femurs (torsion/tension ratio=542.2±262.4 mm, R(2)=0.88±0.13, n=24), and right femurs (torsion/tension ratio=506.7±260.0 mm, R(2)=0.82±0.22, n=25). No statistically significant differences were found for external versus internal rotation groups or for left versus right femurs when comparing torsion/tension ratios (p=0.85) or R(2) values (p=0.54). A strongly coupled linear relationship between torsion and tension for human femurs was exhibited. This suggests an interplay between these two factors during activities of daily living and injury processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.