Abstract

The biomechanical function of the wrist is widely assessed by measuring the range of motion (RoM) in two separate orthogonal planes: flexion–extension (FE) and radioulnar deviation (RUD). However, the two motions are coupled. The aim of this study is to compare wrist circumduction with FE and RUD RoM in terms of representativeness of the kinematic requirements for performing activities of daily living (ADL). To this end, the wrist motion of healthy participants was measured while performing maximum RoM in FE and in RUD, circumduction, and thirty-two representative ADL. Active and functional RoM (ARoM and FRoM) were computed in each plane, the evolving circumduction curves were adjusted to ellipses, and intensity maps representing the frequency of the coupling angles in ADL were plotted, both per ADL and globally for both hands. Ellipses representing different percentages of coupling angles in ADL were also plotted. Wrist circumduction fits the coupling angles measured in ADL better than ARoM or FRoM. As a novelty, quantitative data for both circumduction and the coupling angles required in ADL are provided, shedding light on the real biomechanical function requirements of the wrist. Results might be used to quantify mobility reduction and its impact on the performance of ADL, globally and per ADL, to enhance rehabilitation strategies, as well as in clinical decision-making, robotics, and prostheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.