Abstract

The Finite Element Method (FEM) models are valuable tools to create an idea of the behavior of any structure. The complexity of the joints, materials, attachment areas, and boundary conditions is an open issue in biomechanics that needs to be addressed. Scapholunate instability is the leading cause of wrist pain and disability among patients of all ages. It is needed a better understanding of pathomechanics to develop new effective treatments. Previous models have emulated joints like the ankle or the knee but there are few about the wrist joint. The elaboration of realistic computational models of the carpus can give critical information to biomedical research and surgery to develop new surgical reconstructions. Hence, a 3D model of the proximal carpal row has been created through DICOM images, making a reduced wrist model. The materials, contacts, and ligaments definition were made via open-source software to extract results and carry on a reference comparison. Thus, considering the limitations that a reduced model could carry on (unbalanced forces and torques), the stresses that result in the scapholunate interosseous ligament (SLIL) lead us to a bones relative displacement, which support the kinematics hypothesis in the literature as the distal carpal row moves as a rigid solid with the capitate bone. Also, experimental testing is performed, successfully validating the linear strength values of the scapholunate ligament from the literature.

Highlights

  • Scapholunate dissociation is the most frequent pattern of carpal instability (57% of total wrist injuries) and is related to a lesion that affects the scapholunate interosseous ligament (SLIL) (Pappou et al, 2013; Elsaftawy et al, 2014)

  • In the case of radial deviation, we have to add the interaction with the proper radial deviation motion, which causes a compressed area on the lunate surface

  • These results are near to the kinematics of the carpal row (Quigley, 2014)

Read more

Summary

Introduction

Scapholunate dissociation is the most frequent pattern of carpal instability (57% of total wrist injuries) and is related to a lesion that affects the scapholunate interosseous ligament (SLIL) (Pappou et al, 2013; Elsaftawy et al, 2014). The scapholunate ligament is considered the primary stabilizer of the scapholunate joint (Garcia-Elias et al, 2006). The secondary stabilizers (as radioscaphoid-capitate or scaphoid-trapezium-trapezoid ligaments) become progressively incompetent due to fatigue (Kitay and Wolfe, 2012). This loss of joint relationship favors the development of radiocarpal and midcarpal osteoarthritis (Harrington et al, 1987; Watson et al, 1997)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call